Category Archives: Inception

Show and Tell Image Captioning using a DNN and LSTM network

There’s a new TensorFlow model for image captioning available here. It combines a deep convolutional neural network (Inception-v3) with an LSTM-based decoder network. LSTM is cropping up just about everywhere now…


recognize – a new rtndf pipeline processor element for object recognition using Inception-v3

GuitarYes, that is me waving my Taylor (made in San Diego 🙂 ) guitar around in a very careless manner. It’s all in a good cause though. Turns out that Inception-v3 is very good at recognizing acoustic and electric guitars. I put together a new rtndf PPE called recognize based on the code here from the TensorFlow repo.

In its simplest mode, the recognize PPE takes an incoming video stream and tries to recognize an object in the entire frame. If it finds something, it adds a label in the bottom left corner of the image and uses that to generate a new output stream. That’s ok, but what’s more interesting is when it works with another PPE, modet. modet detects moving objects in the stream and draws a box around them. It now also adds metadata to the outgoing pipeline messages that can be used by downstream PPEs to do something with the regions where motion has been detected.

recognize can work in a mode where it uses the modet metadata to recognize moving objects in the stream. The screen capture with the guitar is an example. That’s why I was waving it around – it had to be in motion to get detected and recognized. The box is that big because I am in motion too! However, Inception-v3 seems quite able to recognize the dominant object in the image segment. While there is only one recognized object in this example, if there were more regions they would be individually recognized.

Of course, the example data set for Inception-v3 only knows so many things, guitars being an example. However, something I want to use this for is to detect a UPS truck coming up the drive. I’ll probably have to try retraining the final layer to do this.

Processing video streams with TensorFlow and Inception-v3

InceptionMugI am currently working with TensorFlow and I thought it’d be interesting to see what kind of performance I could get when processing video and trying to recognize objects with Inception-v3. While I’d like to get TensorFlow integrated with some of my Qt apps, the whole “build with Bazel” thing is holding that up right now (problems with Eigen includes – one day I’ll get back to that). As a way of taking the path of least resistance, I included TensorFlow in an inline MQTT filter written in Python. It subscribes to a video topic sourced from a webcam and outputs recognized objects in the stream.

As can be seen from the screen capture, it’s currently achieving 11 frames per second using 640 x 480 frames with a GTX 970 GPU. With a GTX 960 GPU, the rate falls to around 8 frames per second. This is pretty much what I have seen with other TensorFlow graphs – the GTX 970 is about 50% faster than a GTX 960, probably due to the restricted memory bus width on the GTX 960.

Hopefully I’ll soon have a 10 series GPU – that should be an interesting comparison.